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Finding Haplotype Tagging SNPs by Use of Principal Components Analysis
Zhen Lin and Russ B. Altman
Department of Genetics, School of Medicine, Stanford University, Stanford, CA

The immense volume and rapid growth of human genomic data, especially single nucleotide polymorphisms (SNPs),
present special challenges for both biomedical researchers and automatic algorithms. One such challenge is to select
an optimal subset of SNPs, commonly referred as “haplotype tagging SNPs” (htSNPs), to capture most of the
haplotype diversity of each haplotype block or gene-specific region. This information-reduction process facilitates
cost-effective genotyping and, subsequently, genotype-phenotype association studies. It also has implications for
assessing the risk of identifying research subjects on the basis of SNP information deposited in public domain
databases. We have investigated methods for selecting htSNPs by use of principal components analysis (PCA).
These methods first identify eigenSNPs and then map them to actual SNPs. We evaluated two mapping strategies,
greedy discard and varimax rotation, by assessing the ability of the selected htSNPs to reconstruct genotypes of
non-htSNPs. We also compared these methods with two other htSNP finders, one of which is PCA based. We
applied these methods to three experimental data sets and found that the PCA-based methods tend to select the
smallest set of htSNPs to achieve a 90% reconstruction precision.

Introduction

SNPs are the most common type of genetic variation in
the human genome (Collins et al. 1997). They are stable
sequence variations, in which typically two alternate nu-
cleotide bases are observed at one position across some
populations. Even though most SNPs have no observable
phenotype, they occur sufficiently frequently within the
genome to offer an opportunity for tracking both disease
genes and population histories. Thus, they are effective
markers for genomic research.

SNPs are ubiquitous in the human genome, but the
precise number depends on an arbitrary cutoff for defin-
ing a polymorphism (in contrast to a mutation). For in-
stance, ∼10 million SNPs are found if they are defined
as having minor-allele frequencies 11% (Kruglyak and
Nickerson 2001). The dbSNP database catalogs SNPs
and currently contains ∼9 million distinct entries (dbSNP
build 121) (Wheeler et al. 2003). With the recent devel-
opment of sequencing technology, the availability of hu-
man SNP data is expanding quickly. To cope with this
large amount of information, the biomedical informatics
community is investigating methods to organize, sum-
marize, and analyze SNPs (Klein et al. 2001; Ritchie et
al. 2001; Hahn et al. 2003; Wheeler et al. 2003).

Sets of nearby SNPs on the same chromosome are

Received May 13, 2004; accepted for publication August 31, 2004;
electronically published September 23, 2004.

Address for correspondence and reprints: Dr. Russ B. Altman, De-
partment of Genetics, Stanford University, 300 Pasteur Drive L-301,
Stanford, CA 94305-5120. E-mail: russ.altman@stanford.edu

� 2004 by The American Society of Human Genetics. All rights reserved.
0002-9297/2004/7505-0011$15.00

inherited in blocks. Each block contains only a few com-
mon haplotypes (Stephens et al. 2001a; Gabriel et al.
2002), which are specific arrangements of alleles. Be-
cause pairs of SNPs, especially those within a block or
in close proximity, are often correlated, the number of
SNPs required to capture the haplotype diversity of each
block can therefore be largely reduced. The correlation
or association between SNPs is referred to as “linkage
disequilibrium” (LD). The minimal informative subset
of SNPs associated with the limited number of haplo-
types in a block are often referred to as “haplotype
tagging SNPs” (htSNPs) (Daly et al. 2001; Johnson et
al. 2001; Patil et al. 2001; Gabriel et al. 2002).

It is sometimes possible to select htSNPs by eye for
small genomic regions (Daly et al. 2001; Johnson et al.
2001). Because of the size and growth of SNP data,
manual compilations of htSNPs suffer from problems
of completeness and timeliness. Automatic methods for
selecting htSNPs would therefore be very useful.

A number of methods for identifying htSNPs are
based on searches; they systematically evaluate subsets
of SNPs and use a metric to evaluate each set of can-
didate htSNPs. One method chooses htSNPs to discrim-
inate all nonsingleton sequences uniquely (Patil et al.
2001). A more complex method measures the number
of differences in all pairwise comparisons between se-
quences as the haplotype diversity and chooses htSNPs
explaining the greatest amount of the total haplotype
diversity (Daly et al. 2001). Several other researchers
use entropy (H) to quantify haplotype diversity (Judson
et al. 2002; Avi-Itzhak et al. 2003; Hampe et al. 2003)
and select the set of htSNPs with the minimal size but
the maximal information content retained. Others
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choose the set of htSNPs minimizing the squared cor-
relation between the estimated and the true value of the
number of copies of haplotypes carried by a subject or
alleles carried at each SNP (Chapman et al. 2003; Stram
et al. 2003).

Bafna et al. (2003) proposed a completely different
approach, measuring how well one SNP predicts another
and how well a set of SNPs predicts a single SNP and
another set of SNPs. They showed the htSNP finding
problem to be NP-complete by use of this measure. (In
computational complexity theory, NP-complete prob-
lems are the most difficult problems among the set of NP
[nondeterministic polynomial-time] problems.) Along the
same lines, the program BEST is based on set theory and
recursively searches the minimal set of SNPs from which
the maximum number of the other SNPs in the data set
can be derived with a given function (Sebastiani et al.
2003). Meanwhile, other approaches avoid exhaustive
searches by clustering SNPs on the basis of similarities
of pairwise LD measures and then selecting one htSNP
per cluster (Wu et al. 2003; Carlson et al. 2004).

Current computational challenges related to htSNPs
fall into two areas: (1) developing efficient algorithms
and (2) developing mechanisms for comparing the per-
formance of these algorithms. Principal components
analysis (PCA) is an efficient method of finding inde-
pendent basis vectors that has been successfully applied
in other application areas. We have investigated PCA-
based approaches to finding htSNPs and have evaluated
the selections of htSNPs according to their ability to
recover genotypes of non-htSNPs. The performance in
predicting genotypes of non-htSNPs on the basis of ge-
notypes of htSNPs allows us to compare different
algorithms.

PCA is a dimensionality-reduction technique for mul-
tivariate analysis (Mardia et al. 1979; Dunteman 1989;
Duda et al. 2001). It is widely used in signal processing
and feature recognition. It has also recently been applied
to bioinformatics (Raychaudhuri et al. 2000; Troyan-
skaya et al. 2001), including the definition of htSNPs
(Meng et al. 2003; Horne and Camp 2004). Geomet-
rically, PCA is a procedure to rotate data such that
maximum variability is projected onto orthogonal axes
according to a minimum-square-error criterion. Essen-
tially, a set of correlated variables is transformed into
a substantially smaller set of uncorrelated variables
(principal components) that represent most of the in-
formation in original data, where principal components
are linear combinations of the original set of variables.
Thus, PCA-based approaches allow us to consider all
data of a gene-specific region or a haplotype block si-
multaneously and efficiently.

One of the challenges in using PCA on SNP data is
that the principal components that are defined do not
correspond to actual genotypes, since genotypes are dis-

crete variables. Thus, we need ways to map the principal
components optimally to measurable genotypes. In this
article, we present the results of our (1) investigation of
two different htSNP-mapping methods for PCA, (2) sen-
sitivity analyses of these two mapping methods, and (3)
comparison of PCA-based approaches with two other
htSNP-finding methods through use of three publicly
accessible SNP data sets. The source code of the algo-
rithms that we implemented is available online at the
authors’ Web site.

Methods

We divide the htSNP-finding problem into two steps: (1)
using PCA to locate principal SNP components from the
sample—that is, locating eigenSNPs—and (2) mapping
principal SNP components to characteristic SNPs—that
is, mapping htSNPs. The second step, in particular, is
approximate and can be performed in a number of dif-
ferent ways, two of which we will discuss.

Locating EigenSNPs

Our initial analysis focuses on the principal compo-
nents of SNPs. We first create a correlation matrix to
measure how each SNP contributes information to the
data set. We then summarize the information compactly
with principal SNP components—that is, eigenSNPs.

We start with a matrix of SNP data, X, in which each
row i from corresponds to a different chromo-1 … n
some, and each column j from corresponds to a1 … p
SNP from the chromosome. Each contains two val-X ij

ues, 1 for the rare allele and 0 for the common allele.
We compute the p-dimensional mean vector m and

correlation matrix R for the full data. Next, wep # p
compute eigenvectors and eigenvaluesE p {e , … ,e }1 p

, by solving the equationL p {l , … ,l }1 p

Re p l e , j p 1, … ,p ,j j j

and sort these eigenvectors according to decreasing ei-
genvalues. We choose the k eigenvectors with the largest
eigenvalues, which define k eigenSNPs. Each eigenSNP
s is a weighted sum of SNPs:

p

s p e x , i p 1, … ,k ,�i ij j
jp1

where the weights are the coefficients of the eigenvector.
PCA can be based on either a covariance matrix or a

correlation matrix. For this problem, a correlation ma-
trix is attractive because it directly relates to commonly
used LD measures; PCA of correlation matrices also pro-
duces less bias when variables are measured in different
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units and when there are large differences in variances
among variables (Mardia et al. 1979; Dunteman 1989).

Each eigenvalue lj is the amount of variance explained
by the eigenvector ej. The sum of variances of eigenSNPs
is equal to the sum of variances of original SNPs. There-
fore, the proportion of variance in the original p SNPs
that k eigenSNPs accounts for is

k� l i
ip1 .p� l j
jp1

Several rule of thumb criteria for excluding principal
components exist (Mardia et al. 1979). We choose to
include just enough k components to explain 90% of
the total variance. This choice can be changed depending
on details of the application. Choosing a higher per-
centage cutoff preserves more information about SNPs.
The appropriate cutoff depends on the properties of in-
dividual data sets and genotyping constraints.

Mapping htSNPs

Since eigenSNPs are mathematical abstractions and do
not directly correspond to measurable quantities, they
are hard to use for making decisions about which SNPs
to genotype. Therefore, we map each of them to the
nearest SNP in the original data set as an htSNP, where
we define near as having a substantial large coefficient
between the eigenSNP and the real SNP on the genome.
If a SNP has a substantial large coefficient with one
eigenSNP, we assume that it contributes greatly to this
eigenSNP. We compare two mapping methods: (1) the
greedy-discard method and (2) the varimax-rotation
method.

Greedy-discard method.—We regard an eigenSNP
with a small eigenvalue as being of less importance, and,
consequently, the SNP that is highly correlated to it
should be of less overall importance or redundant. Thus,
we decompose this mapping method into two substeps.
First, from the eigenvector with the smallest eigenvalue
to the one with the th smallest eigenvalue, we(p � k)
reject the SNP (1) that has the largest coefficient (ab-
solute value) in the th eigenSNP and (2) that has(p � k)
not been previously discarded. Then, in the reverse order,
we map the retained k eigenSNPs to remaining k SNPs
in the original data as k htSNPs.

Varimax-rotation method.—A SNP may have similar
coefficients with several eigenSNPs, which creates dif-
ficulty in determining the eigenSNP to which this SNP
most contributes. The varimax-rotation criterion max-
imizes the sum of the variances of the squared coeffi-
cients within each eigenvector. Geometrically, pairs of
axes defined by PCA are rotated iteratively so that each

SNP has either a high or low coefficient for a rotated
eigenSNP, with perhaps some SNPs left over. The rotated
solution spans the same geometric space as the original
solution and explains the same amount of variance in
the data as the original solution (Mardia et al. 1979;
Dunteman 1989). Thus, this rotation simplifies the SNP-
eigenSNP relationship and eases the interpretation, in
which optimal case each SNP has a high coefficient with
only one rotated eigenSNP (see further description of the
varimax-rotation procedure at the authors’ Web site).

We apply the varimax-rotation method on eigenvec-
tors E, a method detailed by Meng et al. (2003). Instead
of applying the procedure to each small subset of SNPs,
as they did, we apply it to all of the SNPs in the data
set. We find an orthogonal transformation T so that
rotated eigenvectors will confine the influencerE p ET
of each SNP to a particular eigenvector, where rE p

.r r{e , … ,e }1 p

For each SNP, we compute its average coefficient for
all k eigenSNPs,

k1 rF FG p e , i p 1, … ,n ,�i ijk jp1

and its average coefficient for the rest of the (p � k)
eigenSNPs,

p1 rF Fg p e , i p 1, … ,n .�i ijp � k jpk�1

We compare these two average coefficients and select
this SNP if it has a higher average coefficient for the k
eigenSNPs ( ), which indicates that this SNP con-G 1 gi i

tributes most significantly to the k eigenSNPs.

Evaluation and Comparison

If the selected htSNPs represent most of the haplotype
diversity of a genomic region, we should be able to recover
genotypes of non-htSNPs, given genotypes of htSNPs.
Therefore, we evaluated selected htSNPs on the basis of
their performances in reconstructing genotypes of re-
maining non-htSNPs. We used a procedure called cross-
validation, where, each time, we partition the data set
into a training set and a validation set; we use the training
set to identify htSNPs and the validation set to evaluate
their abilities of recovering non-htSNP genotypes.

To reduce the computation time required for valida-
tion, we used 10-fold cross-validation for the IBD data
set, whereas for the others we used leave-one-out cross-
validation. For leave-one-out cross-validation, we run
the htSNP-finding algorithm while leaving out each
chromosome successively (for a total number of runs
equal to the number of chromosomes in the data set)
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and then validate the results for the missing chromo-
some, as described in next paragraph. For 10-fold cross-
validation, we randomly partition data into 10 disjoint
sets of equal size; then, we run the htSNP-finding al-
gorithm 10 separate times, each time using the training
set from which a different 10% of data has been left
out to be the validation set.

For each chromosome in the validation set, we use
htSNP genotypes to predict non-htSNPs genotypes. The
prediction of a non-htSNP genotype depends on how
well it correlates with each htSNP genotype in the train-
ing set. The htSNP genotype that has the greatest cor-
relation with the non-htSNP genotype determines the
non-htSNP genotype. For instance, if (1) SNPX has ge-
notypes A and G at allele frequencies 70% and 30%,
respectively; (2) htSNPY has genotypes C and T also at
allele frequencies 70% and 30%, respectively; and (3)
genotype A is highly correlated with genotype C; then
htSNPY can reliably predict SNPX.

When multiple htSNPs have the same correlation co-
efficient with a non-htSNP but their predictions on the
genotype of the non-htSNP are contradictory, we fill in
the genotype of the non-htSNP with its common allele.
For example, if another htSNPZ has genotypes G and A
at allele frequencies 60% and 40%, respectively, SNPX

correlates equally to htSNPY and htSNPZ, but htSNPY

predicts that SNPX has genotype A whereas htSNPZ pre-
dicts that it has genotype G. Then, we predict that SNPX

has genotype A, which has an allele frequency of 70%.
Let the variance explained be the amount of variance

that a set of k htSNPs or eigenSNPs explains,

k� l i
ip1 ,p� l j
jp1

where k is the number of htSNPs, p is the number of
non-htSNPs, and l is the eigenvalue. With the predic-
tions on non-htSNP genotypes based on htSNP geno-
types, we calculate the precision at all possible variance
explained cutoffs, generating both (number of htSNPs)/
variance and (number of htSNPs)/precision curves. The
precision is

number of correctly predicted alleles
,

all predictions

which indicates the number of errors produced. We
count a SNP allele as correct if the predicted genotype
matches the original genotype exactly.

We defined the baseline accuracy by randomly select-
ing any SNPs and labeling them as htSNPs. We com-
pared the performance of the two mapping methods

based on PCA and the strategy of randomly selecting
htSNPs. In addition, we compared the results with the
ones produced by the application htstep (Johnson et al.
2001; software available from D. Clayton’s Web site)
and the ones based on PCA with a sliding window ap-
proach (Meng et al. 2003).

htstep method.—In this approach, the haplotype di-
versity is defined as the total number of differences re-
corded in all pairwise comparisons between chromo-
somes (Johnson et al. 2001). For a SNP j, the diversity
is

n n

2D p (x � x ) ,′��j ij i j′ip1 i p1

where the difference of is 0 if chromosome i(x � x )′ij i j

and i′ at position j are the same and is �1 if they differ.
The total haplotype diversity (diversity explained) is the
summation over all SNPs:

n n p

TD p (x � x ) (x � x ) p D .′ ′�� �i i i i j′ip1 i p1 jp1

The htSNPs are a set of SNPs that explain the greatest
amount of the total haplotype diversity. Once a set of k
candidate htSNPs classify n chromosomes into G p

(at most) groups, all chromosomes within one groupk2
have all the same alleles at each htSNP position. For
each group, a within-group diversity is computed. The
total residual diversity (R) is the sum of the within-group
diversities:

G

R p D .� g
gp1

The proportion of diversity explained by the set of
htSNPs is

R
P p 1 � .

D

Therefore, htSNPs are the ones minimizing the within-
group heterozygosity.

We used the original source code provided by the
Clayton group (Johnson et al. 2001). Because it can be
time consuming to identify the optimal htSNP set by an
exhaustive search from the possible candidatep2 � 1
sets, we used its recommended program htstep with both
step-up and step-down default parameters to speed up
computations. With the same cross-validation strategy,
we calculated the precision at every possible diversity
explained cutoff, generating both (number of htSNPs)/
diversity and (number of htSNPs)/precision curves.
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Sliding window method.—Under the assumption that
the haplotype information is important in the context
of nearby markers, Meng et al. (2003) proposed a sliding
window approach. They partitioned SNPs into small sets
along a sliding window and recursively used PCA to filter
out candidate htSNPs from each set until reaching a
predetermined convergence criterion. Although this is a
PCA-based method, it focuses on small windows, which
leads to substantially different performance in compar-
ison with three global PCA methods.

Given a set of p SNPs arranged according to a map
order, a sliding window with a relatively small window
size is moved along the map. We then apply the above-
described PCA with varimax-rotation mapping proce-
dure in each window. The selection or nonselection of
a SNP is recorded in a vector ,W p {w ; j p 1, … ,L}i ij

where L is the window size; indicates that thew p 1ij

jth SNP is not selected in the ith window, and w p 0ij

otherwise. Each SNP’s relative redundancy (rr) is com-
puted by averaging its corresponding over all thewij

windows in which it appears, and it is recorded in an-
other vector . A SNP is rejectedRR p {rr ; j p 1, … ,p}j

as a candidate htSNP if its rr is above a predetermined
threshold. Repeat the sliding window procedure on the
remaining SNPs until it converges. The convergence is
achieved when the difference between the number of
SNPs before and after selection represents �5% of the
SNPs before selection (Meng et al. 2003).

We implemented this approach with a sliding window
size of 5 and an rr threshold of 75%, as recommended
in the original publication. In cross-validation experi-
ments, we calculated the precision at every possible
variance-explained cutoff, generating both (number of
htSNPs)/variance and (number of htSNPs)/precision
curves.

Experimental Data Sets

We used three published experimental SNP data sets
for the evaluation. If a data set contained unphased dip-
loid data, we preprocessed it by inferring haploid data
by use of the PHASE 2.0.2 haplotype inference program
(Stephens et al. 2001b; Stephens and Donnelly 2003;
PHASE Web site). Though PCA can select htSNPs di-
rectly from unphased diploid data (Meng et al. 2003),
not all htSNP finders can do so. We thus used phased
haploid data in our analysis, to directly compare per-
formances of different algorithms.

The first data set is the ACE (angiotensin I converting
enzyme) data set from a study of 78 SNPs typed on
DCP1 (Rieder et al. 1999; Nickerson Group Web site)
in 11 individuals. DCP1 is a gene encoding ACE and
stretches over a genomic region of length 24 kb. We
used a total of 52 biallelic nonsingleton SNPs from 22
phased chromosomes for our analysis.

The second data set is the ABCB1 data set from Uni-
versity of California–San Francisco membrane trans-
porter gene study (Kroetz et al. 2003; Pharmacogenetics
and Pharmacogenomics Knowledge Base Web site).
ABCB1 is a gene responsible for P-glycoprotein and ex-
tends over 74 kb of the genome sequence. The original
diploid data contain 48 SNPs typed in 247 individuals.
After applying PHASE 2.0.2, we used 27 biallelic non-
singletons from 484 phased chromosomes for our
analysis.

The third data set is the IBD 5q31 data set from an
inflammatory bowel disease study of father-mother-child
trios (Daly et al. 2001; IBD5 Data Release Page). The
original diploid data contain 103 SNPs covering 500 kb
of the genome, typed in 387 subjects. We again used
PHASE 2.0.2 to infer haplotypes, resulting in 103 bial-
lelic nonsingletons from 774 phased chromosomes for
our analysis.

We implemented the PCA greedy-discard method, the
PCA varimax-rotation method, and the PCA sliding win-
dow method in Python 2.3 (Lutz and Ascher 1999) and
Matlab 6.5 (The MathWorks), with Numerical Python
23.1 (Ascher et al. 2001; Numerical Python Web site)
and Pymat 1.02 (Sterian 1999; Pymat Web site) libraries.
We used Intercooled Stata 8.0 (StataCorp LP) to run
htstep. All experiments were conducted on Solaris ma-
chines with 900-Mhz processors and each with at least
2 Gb of memory.

Results

We first plotted eigenvalues of the eigenSNPs from the
ACE, ABCB1, and IBD data sets as Scree graphs (see
fig. 1), which illustrate the set of eigenSNPs identified in
each data set and their associated variance. For each
method, we then identified htSNPs explaining 90% of
the data variance (see details of the identified htSNPs at
the authors’ Web site). For instance, the PCA greedy-
discard method identified 5 htSNPs in the ACE data set,
18 in the ABCB1 data set, and 15 in the IBD data set.
Figure 2 shows, for each method, the detailed lists of
htSNPs explaining 90% of variance in the ACE data set.

We cross-validated each method on all three data sets
and compared their performance. We calculated the pre-
diction precision at every variance/diversity explained
cutoff and plotted them against the corresponding num-
ber of htSNPs (see figs. 3–5). Methods that primarily
reside in the lower right corner of a (number of htSNPs)/
variance plot (see figs. 3A, 4A, and 5A) use the smallest
set of htSNPs to capture the most variance. Likewise,
methods that primarily reside in the upper left corner
of a (number of htSNPs)/precision plot (see figs. 3B, 4B,
and 5B) use the smallest set of htSNPs to achieve the
highest prediction precision.
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Figure 1 Eigenvalues from eigenSNPs for each experimental data set. The horizontal axes are eigenSNPs with decreasing eigenvalues.
The vertical axes are the percentages of the variance in the data that each eigenSNP explains. Graphs A, B, and C show results from the ACE,
ABCB1, and IBD data sets, respectively. In the ACE and IBD data sets, most of the variance was contained in just a small proportion of
eigenSNPs. The ABCB1 data set was an exception; the variance was split among many eigenSNPs with substantial weights. These Scree graphs
are helpful in estimating the number of eigenSNPs/htSNPs required to capture data variance or haplotype diversity.

Discussion

With the enormous number of SNPs currently in the
dbSNP and the rate at which we are identifying new
ones, defining htSNPs that capture most of the variance
in the data requires automated methods. Since LD is
common among SNPs, high-throughput genotyping ef-
forts and computer programs analyzing phenotype-ge-
notype correlations will have to deal with correlated
SNPs and can benefit from more-compact representa-
tions of SNP information.

The PCA-based approaches transform the data into
orthogonal spaces and map a set of principal compo-
nents back to the SNPs that contribute the most. PCA
allows us to consider pairwise correlation coefficients
of all SNPs at once. The PCA-based approaches effi-
ciently found htSNPs that have better performance in
recovering genotypes of non-htSNPs than those iden-
tified by the non-PCA-based approach. Because the
computational complexity of PCA on a set of SNPs of
size N ranges from to , these methods have2 3O(N ) O(N )
computational advantages over other methods that re-
quire exhaustive searches on all candidate htSNPs.

We evaluated the performance of all methods against
a random strategy, to assess the overall value of htSNP
selection for each data set, since different levels of LD
may make some htSNP selection processes easier than
others. For example, a random strategy performed rea-
sonably well for ACE and IBD data sets but not for the
ABCB1 data set, because there is less LD in that gene.
This result is explained by distributions of principal
components in Scree graphs (see fig. 1). These graphs
show that we can summarize most of the data variance

with a much smaller subset of eigenSNPs in the ACE
and IBD data sets. Thus, a random selection of SNPs
has a high likelihood of capturing components in these
data. Conversely, for the ABCB1 data, the variance was
split among many eigenSNPs with substantial weights;
therefore, a random selection of htSNPs performed
poorly.

We cross-validated all methods on three experimental
data sets, which contain different numbers of SNPs and
chromosomes from three regions of the human genome.
Though the plots of results are scaled differently, they
show very similar global patterns and trends across all
data sets. As shown in the (number of htSNPs)/variance
plots (see figs. 3A, 4A, and 5A), a larger set of htSNPs
was generally required to explain more variance in the
data. The PCA greedy-discard and varimax-rotation
methods tend to choose the smallest set of htSNPs be-
yond the 80% variance explained cutoff. We note that
the number of htSNPs selected by the sliding window
approach fluctuated with the amount of variance ex-
plained. This was a result of using a small window size,
so that the choices of htSNPs were sometimes trapped
in local minima.

As expected (and shown figs. 3B, 4B, and 5B), larger
sets of htSNPs had better performance in predicting ge-
notypes of htSNPs on the basis of genotypes of non-
htSNPs. When the performance of each method was
compared with the random strategy of selecting the
same number of htSNPs, the PCA greedy-discard and
varimax-rotation methods achieved higher prediction
precisions across all data sets. However, neither htstep
nor the sliding window approach guaranteed a better
performance than a random strategy.
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Figure 2 htSNPs explaining 90% of the variance in the ACE data set. Sequence data were genotyped in 11 individuals. A checked cell
indicates a rare allele SNP; an empty cell indicates a common allele. The htSNPs from most methods successfully captured the one perfectly
correlated region in data, except for the htstep method with the step-up parameter. The sliding window approach acquired the largest number
of htSNPs from this region. As highlighted in black squares, two perfectly correlated SNPs that were physically distant, beyond the window
size but still within 30 kb, were both selected as htSNPs under the sliding window approach.

When we chose the smallest set of htSNPs that
achieved a prediction precision of 90%, the PCA
greedy-discard and varimax-rotation methods outper-
formed others. The sliding window approach sometimes
could reach a higher prediction precision, but at the
expense of overselecting markers. Furthermore, when
we chose only one htSNP to represent each data set,
the one defined by the PCA greedy-discard and varimax-
rotation methods always had the best performances.
This is consistent with our expectation that, since
eigenSNPs capture the true variance of data, the htSNPs
retained by PCA are better choices.

When evaluating PCA-based methods to identify
htSNPs, we also tried an iterative PCA method, for
which we recomputed the eigenvectors each time and
removed the one with the smallest eigenvalues. Unfor-
tunately, this strategy performed poorly under all
conditions.

Lastly, we examined the actual htSNPs selected by
each method to explain 90% of the total variance in
the ACE data set. The htSNPs from most methods suc-
cessfully captured the one perfectly correlated region in
the data (see the middle region in fig. 2), except for the
htstep method with the step-up parameter. Failure to
identify this region affected the overall prediction pre-
cision when reconstructing genotypes of non-htSNPs.

The sliding window approach selected the largest
number of htSNPs from the ACE data set. Because of

the small window size, this approach retained redun-
dant information unnecessarily. For instance, as is high-
lighted in figure 2, two perfectly correlated SNPs that
were physically distant, beyond the five-SNP window
but still within 30 kb, were both selected as htSNPs.

Our experiments suggest a strategy of using either
greedy discard or varimax rotation as PCA mapping
methods to reach a good prediction precision with a
minimal set of htSNPs. With these htSNPs as a guide,
one can further prioritize the final reduced set of SNPs
for high-throughput genotyping by including poten-
tially functional SNPs, such as the ones within the 3′

and 5′ UTRs of genes; genetic regulators (enhancers,
silencers); exons that are coding, noncoding, or partially
coding; and alternative splicing.

In addition to the implication for cost-effective geno-
typing for correlation studies, defining htSNPs is impor-
tant in other contexts—for example, in assessing the risk
of disclosing the identities and health-related information
of individuals from public-domain SNP databases. htSNP
identification is particularly relevant to the identification
of the independent information content in the genome,
which may be a crucial factor in determining whether
anonymous electronic access to individual-specific SNP
data sets is appropriate (Lin et al. 2004). The htSNPs
defined using PCA-based approaches can be used as an
indicator of the amount of the independent information
content of a SNP data set.



Figure 3 Leave-one-out cross-validation on the ACE data set. The (number of htSNPs)/variance plot (A) indicates the number of htSNPs
selected from each method (Y-axis) to explain a proportion of the total variance (X-axis). The (number of htSNPs)/precision plot (B) indicates
the accuracy of using the htSNP genotype to recover the non-htSNP genotype; the Y-axis indicates the accuracy and the X-axis indicates the
number of htSNPs involved. Dotted horizontal and vertical lines within each graph provide a consistent check scale across different data sets.
Methods that reside in the lower right corner of the (number of htSNPs)/variance plot use the smallest set of htSNPs to capture the most
variance. Likewise, methods reside on the upper left corner of the (number of htSNPs)/precision plot use the smallest set of htSNPs to achieve
the highest prediction precision. The (number of htSNPs)/variance plot shows that both the PCA greedy-discard method and the PCA varimax-
rotation method select the smallest set of htSNPs to explain at least 80% of variance in the data. The (number of htSNPs)/precision plot shows
that both the PCA greedy-discard method and the PCA varimax-rotation method select the smallest set of htSNPs to achieve a 90% precision
in recovering genotypes.
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Figure 4 Leave-one-out cross-validation on the ABCB1 data set. Axes in each graph are as explained in figure 3. The (number of htSNPs)/
variance plot shows that both the PCA greedy-discard method and the PCA varimax-rotation method select the smallest set of htSNPs to explain
at least 80% of variance in the data. The (number of htSNPs)/precision plot shows that the PCA greedy-discard method selects the smallest
set of htSNPs to achieve a 90% precision in recovering genotypes.
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Figure 5 10-fold cross-validation on the IBD data set. Axes in each graph are as explained in figure 3. The plots show that both the PCA
greedy-discard method and the PCA varimax-rotation method perform better than other methods. They use the smallest set of htSNPs to explain
80% of the data variance and to reach a 90% precision in recovering genotypes.
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PCA-based methods can handle only chromosomes
without any missing values. For unphased genotype
data with missing values, we assume that other com-
putational programs, such as SNPHAP (Johnson et al.
2001), PHASE, and HAPLOTYPER (Qin et al. 2002),
can produce suitable inputs for PCA-based approaches.
However, a recent report showed that inferring haplo-
types can lead to a substantial loss of information (Mor-
ris et al. 2004). Because PCA-based methods can be
applied to unphased genotype data directly, they may
be more generally useful than methods that are limited
to inferred haplotypes only. Since more-recent appli-
cations that are directly applicable to unphased geno-
type data have become available (Chapman et al. 2003),
we are further evaluating PCA-based methods against
these applications.

Because of the difficulty in using PCA with zero val-
ues, we have limited our calculation to nonsingleton
SNPs in our cross-validations. In addition, we have em-
ployed a simple marginal-probability strategy for pre-
dicting genotypes when the correlated SNPs are con-
tradictory; other methods may be able to improve
performance in recovering haplotypes.

The two PCA-based methods, greedy discard and var-
imax rotation, used much less time to find htSNPs than
the PCA sliding window approach or htstep in our ex-
periments. However, we anticipate that these PCA-
based methods may not scale as the size of the genomic
sequence fragment increases. To deal with this chal-
lenge, we could investigate methods of integrating PCA-
based methods with other computation approaches,
such as the dynamic-programming algorithm (Zhang et
al. 2004) and the minimal-description-length principle
(Anderson and Novembre 2003).
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